A Preferential Constraint Satisfaction Technique
for Natural Language Analysis*

Katashi Nagao

Sony Computer Science Laboratory Inc.
3 14 18 Higashi-gotanda, Shinagawa ku, Tokyo 141, Japan
E-mail: nagao@csl.sony.co.jp

Abstract. In this paper, we present a new tech-
nique for the semantic analysis of sentences, including
an ambiguity-packing method that generates a packed
representation of individual syntactic and semantic
structures. This representation is based on a depen-
dency structure with constraints that must be satis-
fied in the syntax-semantics mapping phase. Com-
plete syntax-semantics mapping is not performed until
all ambiguities have been resolved, thus avoiding the
combinatorial explosions that sometimes occur when
unpacking locally packed ambiguities. A constraint
satisfaction technique makes it possible to resolve am-
biguities efficiently without unpacking. Disambigua-
tion is the process of applying syntactic and semantic
constraints to the possible candidate solutions (such as
modifiees, cases, and word-senses) and removing un-
satisfactory candidates. Since several candidates of-
ten remain after applying constraints, another kind
of knowledge to enable selection of the most plausi-
ble candidate solution is required. We call this new
knowledge a preference. Both constraints and pret-
erences must be applied to coordination for disam-
biguation. Either of them alone is insufficient for the
purpose, and the interactions between them are im-
portant. We also present an algorithm for controlling
the interaction between the constraints and the pref-
erences in the disambiguation process. By allowing
the preferences to control the application of the con-
straints, ambiguities can be efficiently resolved, thus
avoiding combinatorial explosions.

1 Introduction

Ambiguities in sentences still present major problems
in the development of natural language systems. In
this paper, we present a new technique for the se-
mantic analysis of sentences, including an ambiguity-
packing method that generates a packed representa-

*A shorter version of this paper was presented at
the 10th Euwropean Conference on Artificial Intelligence
(ECAI-92), August 3-7, 1992.

tion of individual syntactic and semantic structures.
This packed representation is based on a dependency
structure with constraints that must be satisfied in
the syntax-semantics mapping phase. Since the ambi-
guities in sentences sometimes cause a combinatorial
explosion, complete syntax-semantics mapping should
not be performed until all ambiguities have been re-
solved without explicitly generating semantic struc-
tures. We also provide a preferential constraint satis-
faction technique that is used for disambiguation and
semantic analysis. Preferences are acquired by using
both the taxonomies of a conceptual lexicon, which
are called natural language classes, and real-world ex-
amples of dependency structures.

We previously proposed a method for structural dis-
ambiguation by using examples of word-to-word de-
pendencies extracted from on-line dictionary defini-
tions and text corpora [10, 11]. In this framework,
each candidate solution of an ambiguity (word-to-
word dependency) is assigned a numerical value in-
dicating its preference and the ambiguity is resolved
by selecting the most plausible candidate. Preferences
for word-to-word dependencies are naturally extended
to preferences for relationships between word-senses.
However, the most plausible candidate solutions may
violate semantic constraints on sentence constituents
(such as slot-filler relationships). A constraint satis-
faction technique makes it possible to efficiently re-
solve ambiguities.

A framework has been developed that regards syn-
tactic analysis as being a problem of constraint sat-
isfaction [8]. In this framework, grammar rules are
represented by constraints on sentence constituents.
Semantic constraints on word-senses are so-called se-
lectional restrictions on consistency between case slots
and their fillers. Disambiguation is the process of ap-
plying constraints to the possible candidate solutions
(such as modifiees, cases, and word-senses) and remov-
ing unsatisfactory candidates. This process is called
constraint propagation or filtering. Unfortunately, sev-
cral candidates often remain after constraint propa-

gation. Constraints and preferences must be applied
together for disambiguation, because either alone is
insufficient for the purpose, and the interaction be-
tween them is important. We developed an algorithm
that allows the preferences to control the application
of the constraints.

Our approach is influenced by the preference seman-
tics proposed by Wilks [17]. While Wilks’ method uses
ounly hand-coded knowledge for disambiguation and
does not consider packing ambiguities as a means of
avoiding combinatorial explosions, our method calcu-
lates the preferences by using knowledge (i.e., natural
language classes) and experience (i.e., examples of de-
pendency structures) and packs ambiguities with de-
layed semantic composition, a technique that is char-
acterized by not doing a complete syntax-semantics
mapping without first having resolved all ambiguities.
Some syntactic/semantic constraints need not be sat-
isfied in order to pack ambiguities. A constraint satis-
faction technique is used for efficient disambiguation.
Waltz and Pollack [16] proposed a microfeature-based
approach. In a network, nodes are joined by micro-
features, which have to be prepared in advance. In-
stead of microfeatures, our system uses dependency
structures as experience, that can be dynamically up-
dated, and NL classes as knowledge. Our experience
is acquired semi-antomatically from text corpora, and
is easy to maintain. Charniak [2] developed a mech-
anism called marker passing, and Hirst [6] developed
disambiguation mechanisms called poraloid words and
the semantic enquiry desk. Our methods, called DS
(dependency structure) retrieval and class abstraction,
are similar to marker passing. Only modifier-modifiee
relationships included in DSs are found. In contrast,
marker passing has a high computational cost and
searches for too many relations.

2 Ambiguity-Packing Based on De-
layed Semantic Composition

2.1 Dependency Structures

A Dependency Structure (DS, hereafter) is an
ambiguity-packed syntactic representation of sentence
structures. It is similar to a syntactic graph [14]. Tt ex-
plicitly represents modifier-modifiee relationships be-
tween words.

A DS is a tree-like structure that consists of nodes
and arcs. A mnode includes some syntactic features
(e.g., cat, subcat, and person). Arcs correspond to
syntactic relationships between sentence constituents
(e.g., SUBJECT, DOBJECT, and PPADJUNCT).

For example, Figure 1 shows the dependency struc-
ture for the sentence “Insert a diskette into the drive.”

A graphical representation of the above DS is shown
in Figure 2 (the nodes corresponding to MOOD, TENSE,
DET, and NUM are omitted for simplicity). We use such
a representation of DSs in the following sections.

PRED ‘‘insert’’ ((cat v) (subcat tranmns))

MOOD imperative

TENSE present

DOBJECT ‘‘diskette’’ ((cat n) (persom 3))
DET ‘‘a’’
NUM sg

PPADJUNCT f‘drive’’ ((cat n) (person 3) (prep into))

DET ¢ ‘the’’
NUM sg

Figure 1: Dependency Structure for Sentence “Insert a
diskette into the drive.”

PPADJUNCT

DOBJECT

Figure 2: Graphical Representation of Dependency Struc-
ture

2.2 Natural Language Classes

We employ an object-oriented conceptual representa-
tion, called the Natural Language (NL, hercafter) class
system [15] to express the meaning of a sentence. NL
objects, which are particular instances of NL classes,
define a set of conceptual word-senses. The set of
NL classes consists of two special classes, *TOP and
*BOTTOM, and two disjoint subsets of classes, open
classes and closed classes. We have is-a relationships
defined over NL classes. For any NL class *x, “*x is-a
*TOP” and “*BOTTOM is-a *x” hold. Open classes corre-
spond to entities which are expressed by nouns, verbs,
adjectives, etc. Closed classes are used to represent at-
tribute values of open classes. Typically, closed classes
represent information conveyed by auxiliary verbs (as-
pects, tense, modals, etc.), determiners, inflections of
verbs and nouns (number, gender, definiteness, etc.),
and prepositions (relationships between two objects).
The closed classes are stable, and are common to al-
most all domains and natural languages. The open
classes are comprehensive, but are dependent on both
the domain and language. In this paper, a class is
defined in terms of a frame format, as shown below.
By convention, an open class name is preceded by an
asterisk, a closed class name is preceded by an as-
terisk and a hyphen, an instance has a hyphen and

a number following its class name, and user-defined
slot (attribute) names are preceded by a colon. The
system-provided slot names and facet names are not
preceded by any special characters (comments, how-
ever, are preceded by semi-colons).

(defclass *insert
;; definition of a class *insert
(is-a (value *action))
;; superclass is *action
(:agent (sem *human *system))
;; :agent must be *human or *system
(:theme (sem *physical-object))
;; :theme must be *physical-object

2.3 Syntax-Semantics Mapping for Natural Lan-
guage Objects

Because NL classes constitute the implementation of
lexical word-senses, we can define the composition of
NL objects to represent the meanings of phrases and
sentences. Mapping rules are thus introduced to spec-
ify the structural composition of NL objects from a
given DS. A mapping rule is associated with each NL
class, or an NL class and a surface word, as follows:

(map *insert <=1=> ¢

;; verb ‘‘insert’’
(:agent = (SUBJECT))

‘insert’’ ((cat v) (subcat trans))
;3 a class *insert is associated with a transitive

(:goal (sem *location *physical—object)) ;3 :agent filler corresponds to a SUBJECT in the DS
;; :goal must be *location or *physical-object (:theme = (POBJECT)))
) ;3 :theme filler corresponds to a DOBJECT in the DS
(:goal = (PPADJUNCT ((prep into))))
;; :goal filler corresponds to a PPADJUNCT with a

In the above example, the value facet of the is-a slot
shows a filler (actual attribute value) of the slot. The
sem facet of other slots shows selectional restrictions
on their potential fillers. Actual fillers for these slots,
except for the is-a slot, are not given in the class def-
inition. The is-a slot is the only system-defined slot
for open classes. All other slots are user-defined (i.e.,
domain-dependent). The is-a slot defines generaliza-
tion relationships among NL classes, which roughly
correspond to the taxonomy of words. A class can in-
herit each slot definition from its superclasses, unless
the slot is redefined. Figure 3 shows a sample hierar-
chy of NL classes. Our actual NL hierarchy consists
of several thousand classes [15, 4] and the Longman
Dictionary of Contemporary English (LDOCE, here-
after) [13] word-senses [5, 12, 3].

open class

*action

*attribute

\7 *BOTTOM

*-definiteness
*-quantifier

closed class

Figure 3: Sample NL Class Hierarchy

;3 preposition ‘‘into’’ in the DS

(map *physical-action <=s=>

;3 *physical-action has no association with a specific

;3 word
(:mood = (MOOD))

;; :mood filler corresponds to a MOOD in the DS

(:time = (TENSE))

;3 :time filler corresponds to a TENSE in the DS

)

The first rule states lexical mapping between a syn-
tactic word, or a node in DS, and an NL object. The
bodies of the first and second rules define structural
mapping (i.e., the mapping between a subtree in the
DS and a semantic slot filler). The first rule defines
that an instance of *insert is created to represent
the meaning of the transitive verb “insert.” Each of
its semantic slot fillers is associated with a specific
syntactic filler of the verb. The «<l= operator indi-
cates that the rule defines lexical mapping, including
structural mapping, and the <s= operator indicates
that the rule defines structural mapping that has no
association with a specific word. Structural mapping
in the first type of rule is applicable only to a specific
NL object which is mapped from a syntactic word,
while the structural mapping for an NL class defined
in the second type of rule is inherited by any of its
subclasses.

2.4 Delayed Composition of Natural Language
Objects

During the sentence analysis process, the DS is the
primary structure to be built. Mapping from DS to
NL objects is not applied immediately. Rather, it is
stored within DS nodes as semantic constraints on DS,

which makes it possible to pack lexical and structural
ambiguities into one (or two) DS while keeping track
of all possible semantic interpretations. For example,
the sentence “VM/SP keeps the information on the
virtual disk.” can be analyzed as a single DS with two
structural ambiguities, as well as many lexical ambi-
guities caused by “keeps,” as shown in Figure 4.

Since the attachment of PPADJUNCT to either
DOBJECT or PRED is ambiguous, its mapping is not
shown in Figure 4 (the “?” mark in the figure rep-
resents an alternative modifiee of the phrase). If
PPADJUNCT is attached to DOBJECT, #information-1
will have a (:location *virtual-disk-1) slot. Oth-
erwise, PRED (thus its five NL objects, *execute-1
through *own-1) will get the slot. The mapping from
PPADJUNCT to :location slot should be available from
the structural mapping rules. All other mappings are
shown in Figure 4. For example, *execute-1 will have
its :mood filler from the MOOD node of the DS (i.e.,
*-declarative-1). Note that we cannot avoid a com-
binatorial explosion if we try to materialize all NL-
expressions along with the DS. We get ten distinct
NL-expressions in the above example, and the DS can
no longer be packed. The lexical ambiguity of PRED
has yet to be resolved.

The disambiguation technique, described later in
this paper, will determine the most probable inter-
pretation. Once the DS becomes unambiguous, the
structural mapping is evaluated to obtain a full NL-
expression that represents the meaning of the sen-
tence. This evaluation process is fairly straightfor-
ward.

3 Acquisition of Preferences Using
Knowledge and Experience

We use two types of information in the disambigua-
tion of sentence structures. Omne type is constraints,
described later in this paper. The other is preferences,
described in this section. The difference between these
types can be characterized briefly as follows: Our con-
straints are symbolic or combinatorial, and restrict
sentence structures, while our preferences are numer-
ical, and compare the candidates of structures. We
acquire the preferences by using NL classes and ex-
amples of DSs.

3.1 Examples of Dependency Structures as Expe-
rience

We constructed a set of Dependency Structures (DSs)
from on-line dictionaries (LDOCE and the IBM Dic-

tionary of Computing) and text corpora [10, 11].

We view the dependency structures as experience,
whereas the NL classes are regarded as knowledge.
The DSs as experience are completely disam-
biguated. Omne node in each is mapped to one NL
object. They are semi-automatically constructed by
using large on-line dictionaries and corpora as source
texts. The sentences in a source text, which can be
ambiguous at first, are disambiguated by using a rel-
atively small number of DSs and NL classes. The
disambiguated DSs are also regarded as experience.
Therefore, experience increases incrementally.

3.2 Acquisition of Preferences

By applying constraints, we can restrict the candi-
dates of ambiguities. However, ambiguities usually
remain in the sentences afterwards. Therefore, we try
to assign a preference value to each candidate to select
the most preferable semantic interpretation.

When there are candidate structures, DSs that are
similar to each of the candidate structures are searched
for. The NL classes are used to abstract those classes
that are mapped from the nodes in the DSs, and the
preferences are calculated using heuristics. We use the
concept of semantic distance to calculate the value of
each preference (defined in Section 3.2.3). The follow-
ing example sentence illustrates these processes:

(S1) VM/SP keeps the information on the
virtual disk.

The DS of (S1) is shown in Figure 5.

PPADJUNCT

PPADJUNCT

Figure 5: Dependency Structure of (S1)

Sentence (S1) has the following ambiguities:

e Structural ambiguity: the attachment of “on the
virtual disk” is ambiguous.

e Lexical ambiguity: the meaning of “keep” is am-
biguous (We assume that the other words contain
no ambiguity).

PRED ‘‘keep’’ ((cat v) (subcat trans)
(sem (*execute-1 (:mood MOOD) (:time TENSE) (:agent SUBJECT) (:theme DOBJECT))
(*guard-1 (:mood MOOD) (:time TENSE) (:agent SUBJECT) (:theme DOBJECT))
(*hold-1 (:mood MOOD) (:time TENSE) (:agent SUBJECT) (:theme DOBJECT))
(*employ-1 (:mood MOOD) (:time TENSE) (:agent SUBJECT) (:theme DOBJECT))
(*own-1 (:mood MOOD) (:time TENSE) (:agent SUBJECT) (:theme DOBJECT))))
MOOD declarative ((sem *-declarative-1))
TENSE present ((sem *-present-1))
SUBJECT ‘VM/SP’’ ((cat n) (person 3) (sem (*vm/sp-1 (:number NUM))))
NUM sg ((sem *-singular-1))
DOBJECT ‘‘information’’ ((cat n) (person 3)
(sem (*information-1 (:definiteness DET) (:number NUM))))
DET ‘‘the’’ ((sem *-definite-1))
NUM sg ((sem *-singular-2))
? PPADJUNCT ‘‘virtual disk’’ ((cat n) (persomn 3) (prep on)
(sem (*virtual-disk-1 (:definiteness DET) (:number NUM))))
DET ‘‘the’’ ((sem *-definite-2))
NUM sg ((sem *-singular-3))
Figure 4: Ambiguous Dependency Structure with Partial Semantic Representation
;3 Sense 1

(defclass *execute

(is-a (value
(:agent (sem
(:theme (sem
Sense 2

9

(defclass *guard

(is-a (value

(:agent (sem

(:theme (sem
;3 Sense 3
(defclass *hold
(is-a (value
(:agent (sem
(:theme (sem
Sense 4

9

(defclass *employ

(is-a (value
(:agent (sem
(:theme (sem
;3 Sense 5
(defclass *own
(is-a (value
(:agent (sem
(:theme (sem

(map *execute <=1=> ‘‘keep’’ ((cat v) (subcat trams)))
*action))

*human *abstract))

*abstract)))

(map *guard <=1=> ‘‘keep’’ ((cat v) (subcat trans)))
*action))
*human))
*human)))

(map *hold <=1=> ‘‘keep’’ ((cat v) (subcat trans)))
*action))
*human *abstract))
*abstract *object)))

(map *employ <=1=> ‘‘keep’’ ((cat v) (subcat trans)))
*action))

*human *abstract))

*movable-object)))

(map *own <=1=> ‘‘keep’’ ((cat v) (subcat tramns)))
*action))
*human))
*abstract)))

Figure 6: Word Sense Definitions and Mapping Rules for “keep”

The word “keep” has five meanings, each of which
can be mapped to one NL object. The mapping rules
and class definitions are as shown in Figure 6

The preference acquisition process consists of three
parts: (1) DS retrieval, (2) class abstraction, and (3)
preference calculation. Below, we explain these pro-
cesses using the example sentence (S1).

3.2.1 DS Retrieval

In the DS retrieval process, DSs that include the words
in each candidate dependency are retrieved. For (S1),
there are two candidate interpretations of the struc-
tural ambiguity:

(C1) “Virtual disk” modifies “keep.”
(Semantically, *virtual-disk-1 may fill the
:location slot of *execute-1, *guard-1i,
*hold-1, *employ-1, or *own-1.)

(C2) “Virtual disk” modifies “information.”
(Semantically, *virtual-disk-1 may fill the
:location slot of *information-1.)

First, the system searches for DSs that include the
word “keep,” as well as words that can be mapped
to one of the NL objects mapped from “keep” (i.e.,
synonyms). DSs that include “virtual disk” and its
Finally, DSs that are
included in both sets of DSs are selected. The same

synonyms are also retrieved.

procedure is followed for “information” and “virtual
disk.”

If there are DSs for only one candidate dependency,
the candidate is preferable. If there are DSs for more
than one candidate, we invoke the preference calcu-
lation process. If there are no DSs, then the class
abstraction process is invoked. In this case, we can-
not find any DSs that include these words, therefore
we proceed to the class abstraction process. These
processes continue until the abstracted class arrives
at the *TOP or until the preferences are assigned to all
candidates of each ambiguity.

3.2.2 Class Abstraction

Briefly, the class abstraction method is as follows:
First, the class corresponding to the modifier is ab-
stracted. (In our example the class of *virtual-disk
is abstracted.) The immediate superclass is *disk and
the retrieval process is re-executed. If no DSs can be
found by class abstraction of the modifier, then the

1We extracted the classes mainly from the Longman
Dictionary of Contemporary English (LDOCE) [13], re-
stricting their meanings and definitions for simplicity.

classes of modifices *keep and *information are ab-
stracted. In this case, we found two DSs for each

candidate, as shown in Figure 7.

SUBJECT

operating system
*operating-system)

(a) DS of (S2)

manage
(*control)

information
*information

(b) DS of (S3)

SUBJECT

file system
*file-system)

PPADJUNCT

Figure 7: DSs of (52) and (S3)

The sentences that correspond to the DSs are as
follows:

For (C1): (S2) The operating system stores
the files in the disk.

For (C2): (S3) The file system manages the
information on the disk.

3.2.3 Preference Calculation

The preference calculation process calculates the se-
mantic distance between the other words in the input
sentence and the nodes in the DS whose rules are con-
sistent with those words. We call each word pair a
matching word pair and present it as a bracketed pair.

For example, [“VM/SP”, “operating system”] and
[“file”,“information”] are matching word pairs for
(C1). [“VM/SP”,“file system”] and [“keep”,“manage
7] are matching word pairs for (C2). For each match-
ing word pair, a distance value is assigned as follows:

e If the matching words are identical or synony-
mous, the value is 0.

e If the matching words have an is-a relationship,
the value is the distance between the NL classes
to which the words in the pair correspond.

e If there is no relationship, the value is the height
of the NL class hierarchy.

The total preference value Pref for a candidate C
is calculated using the following formula:

(We assume that the candidate has n matching word
pairs, MWP, ... MWP,.)

1
E:’:l SemDist(MW P;i(C))

n

Pref(C) =

+ ClassAbs(C)

SemDist(MW P;(C)) :
MWP; for C
ClassAbs(C) : the number of the class abstraction

“\/M SP” is an iIIlIIl()(liat() Sllb(il?LSS ()f “() yeratin
1
”

semantic distance value of

system,” so the semantic distance value is 1. For other
matching words, if there is no relationship and the
height of the NL class hierarchy is ten, the preference
values for (C1) and (C2) are as follows:

1 _ 2

For (C1): mg T
1

For (C2): togo— = =+

=41 1
The candidate having the highest preference value is
the most preferable. In this case, the candidate (C1),
where “virtual disk” modifies “keep,” is preferable to
(C2), “virtual disk” modifies “information.”
The preferences for candidates of ambiguities are
calculated in this way.

4 Disambiguation by a Preferential
Constraint Satisfaction Technique

4.1 Disambiguation as Constraint Satisfaction

Constraints for disambiguation include syntactic and
semantic constraints. Syntactic constraints can be
considered as being declarative representations of syn-
tactic rules. The Constraint Dependency Grammar
(CDG, hereafter) [8] formalizes parsing as a constraint
satisfaction problem. Our syntactic constraints are
equivalent to CDG’s syntactic rules. Semantic con-
straints are formed by the consistency between the se-
mantic categories of case-slots and their fillers, which
are called selectional restrictions.

From these constraints, a constraint network [9] is
generated. Its nodes correspond to ambiguities that
are represented as sets of candidates of slot-filler rela-
tionships. Its arcs correspond to constraint matrices
that represent constraints on combinations of candi-
dates. When the constraint network is generated, an
algorithm for constraint propagation [7] is applied to
resolve any ambiguities. We developed a modified al-
gorithm for constraint propagation that is controlled
by preference orderings.

4.2 Syntactic Constraints

We regard constraints between ambiguous modifica-
tion relations (dependencies) as being syntactic con-

straints. They include the no-crossing constraint,

which means that modification links cannot cross each
other, and the no-duplicate-case constraint, which
means that modification relations (i.e., case-slots)
whose modifiees (i.e., frames with the slot) are the
same cannot play a role of the same relation. De-
pendencies are considered as slot-filler relationships
that are represented by instances of the form (*frame
(:slot *frame-of-filler)).

Ambiguities are non-singleton sets of dependencies
whose modifiers (i.e., fillers) are the same. If a can-
didate dependency of an ambiguity and a candidate
of another ambiguity cross each other, then the com-
bination of these candidates violates the no-crossing
constraint. If an element of an ambiguity has the same
modifiee (frame) and case relation (slot) as an element
of another ambiguity, then their combination violates
the no-duplicate-case constraint.

For example, in the sentence (S4) “Put the block on
the table on the floor in the room.”, the prepositional
phrases “on the table” (PP1), “on the floor” (PP2),
and “in the room” (PP3) have attachment ambigui-
ties, and there are the following syntactic constraints
between these ambiguities.

1. No-crossing
If PP1 is attached to the verb “put” (V), then
PP2 cannot be attached to the noun phrase “the
block” (NP). If PP2 is attached to V, then PP3
cannot be attached to either NP or PP1.

2. No-duplicate-case (in this case, the case relations
correspond to the :goal and :location slots)
If PP1is attached to V, then PP2 and PP3 cannot
be attached to V. If PP1 is attached to NP, then
PP2 and PP3 cannot be attached to NP.

In accordance with these constraints, the constraint
matrices are constructed.?

Table 1 shows the constraint matrices constructed
from (S4), and the sets A1, A>, and Aj in the matrices
are defined as follows.

Ai;={a=(*put-1 (:goal *table-1)),
b=(*block-1 (:location *table-1))}

As={c=(*put-1 (:goal *floor-1)),
d=(*block-1 (:location *floor-1)),
e=(*table-1 (:location *floor-1))}

As={f=(*put-1 (:goal *room-1)),
g=(*block-1 (:location *room-1)),
h=(*table-1 (:location *room-1)),.
i=(*floor-1 (:location *room-1))}

2For the sake of simplicity, we don’t consider word-sense
ambiguities here.

Table 1: Constraint Matrices for (S4)

A i
IAG [« 4 < |[A0&G [F ¢ 7 23 | F ok
a 0 0 1 a 0 0 1 1 !l 1 0 0 1
b 1 0 1 b 1 0 1 1 . 1 1 0 1

The values represent whether the combination sat-
isfies the constraint. When the value is 0, the combi-
nation of elements in that row and column does not
satisfy the constraint. If all the values in a column or
row are 0, then the candidate in that column or row
is removed from the ambiguity. Since all values in the
column of d are 0 in matrix A;\ A2, the candidate d of
A should be removed. Therefore, the values in row d
in matrix A2\ As all become 0. The values in column
g of matrix As\As and those of h in matrix 4;\A4s
also become 0 for the same reason.

Therefore, the matrices on Az are updated by con-
straint propagation. Table 2 shows the revised con-
straint matrices.

4.3 Semantic Constraints

We also consider semantic constraints between slot-
filler relationships called selectional restrictions. They
are taxonomic constraints on which structures can
serve as part of another structure, and are used for
word-sense disambiguation. Word-sense ambiguities
are also represented as non-singleton sets of slot-filler
relationships.

For example, in the sentence (S1) “VM/SP keeps
the information on the virtual disk.” in the previous
section, there is a word-sense ambiguity for “keep”
and a structural ambiguity on the modification of “on
the virtual disk,” as described in the previous section.

We represent these ambiguities as follows:

Aj={a=(*execute-1 (:agent *vm/sp-1)),
b=(*guard-1 (:agent *vm/sp-1)),
c=(*hold-1 (:agent *vm/sp-1)),
d=(*employ-1 (:agent *vm/sp-1)),
e=(*own-1 (:agent *vm/sp-1))}

As={f=(*execute-1 (:theme *information-1)),
g=(*guard-1 (:theme *information-1)),
h=(*hold-1 (:theme *information-1)),
t=(*employ-1 (:theme *information-1)),
j=(*own-1 (:theme #*information-1))}

As={k=(*execute-1 (:location *virtual-disk-1)),
l=(*guard-1 (:location *virtual-disk-1)),
m=(*hold-1 (:location *virtual-disk-1)),
n=(*employ-1 (:location *virtual-disk-1)),
o=(*own-1 (:location *virtual-disk-1)),

p=(*information-1 (:location *virtual-disk-1))}

From the definitions of the senses of “keep” in
the previous section, and from the class relations
of *vm/sp (i.e., *vm/sp is a subclass of *abstract)
and of *information (i.e., *information is also a
subclass of *abstract), we find that *vm/sp-1 does
not fill in the :agent slot of *guard-1 and *own-1,
since their class definitions include the description of
(:agent (sem *human)). Similarly, we can also find
that *information-1 does not fill in the :theme slot
of *guard-1 and *employ-1, since each of their class
definitions includes the description of (:theme (sem
*human)) or (:theme (sem *movable-object)). Fur-
the
whereby if the :agent, :theme, and :location slots
are filled, then the frames including these slots will be
identical, since the frames correspond to the meaning
of the single word “keep” in the sentence (S1).

Considering the semantic constraints, the constraint
matrices are constructed as shown in Table 3.

The matrices on As are updated by constraint prop-
agation as shown in Table 4.

thermore, we also consider trivial constraint

4.4 Algorithm of Disambiguation

A brief overview of the disambiguation algorithin is as
follows:

1. If all combinations of the most preferable candi-
dates satisfy the constraints, then choose them
and terminate. Otherwise, go to the next step.

2. Remove the least preferable candidate. Then per-
form constraint propagation.

3. If all candidate solutions of an ambiguity have
been removed, undo the last propagation (restore
the states that were modified in step 2).

4. If all ambiguities are singletons, then terminate.

Repeat steps 2 and 3 for the next least preferable

ot

candidate.

A detailed algorithm of constraint propagation un-
der the control of preference orderings is as follows:
Let A; and A; be ambiguities, a and b be each element

Table 2: Revised Constraint Matrices for (S4)

A1\ A3 f g h ¢
a 0 0 0 1
b 1 0 0 1

A9\ Ag f g 3 ¢
c 0 0 0 1
d 0 0 0 0
e 1 0 0 1

Table 3: Constraint Matrices for (S1)

ANA; [7 9 i [A1\A3 [& m n o p |[ANAg [k T m w0 p

a T 0 0 0 0 a T 0 0 0 0 1 T 0 0 0 0 1

b o 0 0 0 0 b o 0 0o 0 0 o0 g 0 0 0 0 0 0

c o 0 1 0 0 c o 0 1 0 0 1 3 o 0 1 0 o0 1

d o 0 0 0 0 d o 0 o 1 0 1 i o 0 0 0 0 0

e 00 0 00 e 00 0 0 0 0 j 0 0 0 0o 1 1
respectively, M(¢,7) be a constraint matrix on 4; and (c) If A; = {} then set A; to {b}, for all ele-

Aj, and M(i,a,j,b) be the value of the matrix when
A; takes a and A, takes b. In addition, let p(i,a) be a’s
preference value in ambiguity A;. First, for all pairs
of an ambiguity and its element (7,a), construct an
ordering set PRF that is arranged (7, @) in ascending
order of preference. Thus, for each element (i, a) and
(j,0) of PRF, if (i,a) is ahead of (j,b), then p(i, a) is
equal to or less than p(j,b).

The algorithm consists of the following steps:

1. Remove the front-most element (¢,a) from PRF.

2. Using the following algorithm, for all ambiguities
and their elements, construct their supported sets
and the set of inactive elements IN.

First, for each ambiguity A;, its element a, and a
constraint matrix M (4,7), construct a supported
set of (i,a), S(4,5,a) = {(4,b)|M(i,a,5,b) =1 (in
this case, we say that (j,b) supports (i,a))}. If
S(%,j,a) = {} then put (¢,a) in IN, a set of inac-
tive elements. Also, for each A; and its element
b, construct a supported set of (j,0), S(7,%,0). If
S(j,%,b) = {}, then put (j,b) in IN.

Set the set C HG (the set containing the changed
elements) to {}.

3. For cach of the ambiguities A; and A and their
elements b and c, respectively, if M(i,a,5,b) =1
or M(k,c,i,a) = 1, then set their values to 0 and

put (¢,a,7,b) or (k,c,i,a) in CHG.

4. Iterate the following sub-steps until /N becomes
empty:

(a) Remove element (j,b) from IN.
(b) Set A; to A; — {b}.

ments (k,c,l,d) of CHG, set M(k,c,1,d) to

1, then go to step 1.

(d) For all elements (k,¢) of S(3,b), set
M(j,b,k,c) to 0 and S(k,j,c) to S(k,j,c)—
{(j,b)}, then put (j,b,k,c) in CHG.

(e) If S(k,j,c) = {} and (k,c) is not an element
of IN, then put (k,c) in IN.

5. If all ambiguities are singletons, terminate. Oth-
erwise, go to step 1.

The problem that this algorithm can solve is called
the consistent labeling problem (CLP) [9]. CLP is a
problem that determines the existence of an assign-
ment that satisfies all the constraints, given a set of
variables each of which can take any one of a set of
values and constraints between these values. An ex-
ample of CLP is a graph-coloring problem to assign
colors to a graph with all adjacent vertexes in differ-
ent colors. A CLP is satisfiable if there is an assign-
ment that satisfies all the constraints simultaneously.
Deciding the satisfiability of a CLP is NP complete
in general. However, there are cases in which unsat-
isfactory values (i.e., values that are not included in
any solution) can be identified simply by constraint
propagation that checks local inconsistencies. Such
an algorithm has been shown to have polynomial com-
plexity [7].

It is possible to achieve more global consistency
by looking at multiple constraint matrices simultane-
ously, but as Carter [1] argues regarding the experi-
mental Propane parser, once local (pair-wise) consis-
tencies have been achieved, performing a backtrack
search is usually more efficient than using higher-
level consistency algorithms. Our algorithm combines

Table 4: Revised Constraint Matrices for (S1)

A1\Ajg k 1 m n 0 P A9\ Ag k [] m n 0 P

a T 0 0 0 0 1 f T 0 0 0 0 1
b o 0 0 0 0 0 g o 0 o0 0 0 0
c o o 1 o0 0 1 3 o 0o 1 o0 o0 1
d o 0 0 0 0 0 i o 0 o0 0 0 0
c 0O 0 0 0 0 0 j 00 0 0 0 0

constraint propagation with the preferential control added.

rather than to perform a backtrack search. We ex-

tend a constraint propagation algorithm in two senses. Experiment3

First, we add a control mechanism based on pref-
erential orderings over candidate solutions. Second,
we add an inconsistency checking and undoing pro-
cess when local inconsistencies occur after constraint
propagation. These mechanisms are invoked when the
given constraints are not tight enough to narrow down
the number of candidate solutions to one. If a CLP
can have a solution, then our algorithm can find a
solution, since the algorithm maintains local consis-
tency (locally consistent value sets must contain a so-
lution) and narrows down the number of candidates.
However, since our preference compares candidates of
each value set (i.e., ambiguity) independently, our al-
gorithm may not find the optimum solution that is
prior to all other solutions.

5 Experimental Results

In this section, we describe some experiments in dis-
ambiguation and their results. First, we extracted
529 sample sentences including the verb “get” and it’s
synonyms from LDOCE. The word “get” has twenty
senses, making it very difficult to select a particular
sense simply by selectional restrictions.

We also prepared another 135 test sentences includ-
ing “get” from LDOCE. We randomly divided the test
sentences into three groups (which we call groupi,
group2, and group3). This division is done to see the
effect of increasing experience. The following experi-
ments were carried out on these groups.

Experimentl

Sentences in groupl were disambiguated by experi-
ments with a set of 529 disambiguated dependency
structures.

Experiment2

After Experimentl, we checked and modified the out-
put dependency structures of groupl and added them
to the original DS set. group2 was then disambiguated
with the modified DS set, to which DSs of group1 were

After Experiment2, we checked and modified the out-
put dependency structures of group2 and added them
to the DS set. group3 was then disambiguated with
the modified DS set to which DSs of groupl and
group2 were added.

Table 5 shows the results of the experiments.

We evaluated the outputs of each of the groups and
categorized them into three success levels:

A: There were exactly matched DSs and the system
was able to select a correct answer.
B: More than one DS match had the same preference
value, but the system was able to select a correct an-
swer by using heuristics.
C: The system was not able to select a correct answer.
For the relatively small cases (about 500 DSs), we
attained an average success ratio of 71.5%. This expe-
rience showed that most of time for disambiguation is
taken by DS retrieval and preference calculation, not
by applying constraints and constraint propagation.

6 Concluding Remarks

We have developed a sentence analysis technique con-
taining an ambiguity-packing method, a preference
acquisition method, and a constraint-based disam-
biguation method. Sentences are parsed and trans-
formed into ambiguity-packed dependency structures.
To avoid combinatorial explosions, complete syntax-
semantics mapping must not be performed until all
ambiguities have been resolved without generating in-
dividual semantic structures. A constraint satisfac-
tion technique makes it possible to resolve ambiguities
efficiently without unpacking. Constraints and pref-
erences must be applied together for disambiguation,
because either of them alone is insufficient, and the in-
teraction between them is important. The constraints
The
preferences are acquired from the taxonomies of a con-
ceptual lexicon (NL classes) and examples of depen-
dency structures. To resolve ambiguities efficiently, we

consist of syntactic and semantic constraints.

Table 5: Results of the Experiments

Total sentences | Parsed sentences (S) | A | B | C | 222 (%)
Experiment1 45 41 15| 8 | 18 56.1
Experiment2 45 43 17 (19 | 7 83.7
Experiment3 45 44 22 |11 | 11 75.0

developed a new constraint satisfaction mechanism in
which constraints are applied according to preference
orderings.

Acknowledgments

This work was partially done while the author was a
member of IBM Research, Tokyo Research Laboratory
(TRL). The author would like to thank the members of
the natural language processing group at TRL, espe-
cially Koichi Takeda, Naohiko Uramoto, and Hiroshi
Maruyama, for their helpful discussions and comments
on an earlier draft of this paper.

References

[1] D. Carter, “Efficient Disjunctive Unification for
Bottom-Up Parsing,” In Proceedings of the 13th In-
ternational Conference on Computational Linguistics

(COLING-90), pages 70-75, 1990.

[2] E. Charniak, “A Neat Theory of Maker Passing,”
In Proceedings of the 5th National Conference on Ar-
tificial Intelligence (AAAI-86), pages 584-588, 1986.

[3] M. S. Chodorow, R. J. Byrd, and G. E. Heidorn,
“Extracting Semantic Hierarchies from a Large On-
Line Dictionary,” In Proceedings of the 23th Annuwal
Meeting of the ACL, pages 299-304, 1985.

[4] K. Goodman and S. Nirenburg, editors, The
KBMT Project: A Case Study in Knowledge-Based
Machine Translation, Morgan Kaufmann Publishers,
San Mateo, California, 1991.

[5] L. Guthrie, B. M. Slator, Y. Wilks, and R. Bruce,
“Is There Content in Empty Heads?,” In Proceed-
imgs of the 13th International Conference on Com-
putational Linguistics (COLING-90), pages 138 143,
1990.

[6] G. Hirst, Semantic Interpretation and the Res-
olution of Ambiguity, Cambridge University Press,
1987.

[7] A. K. Mackworth, “Consistency in Networks of
Relations,” Artificial Intelligence, volume 8, pages
99-118, 1977.

[8] H. Maruyama, “Structural Disambiguation with

Constraint Propagation,” In Proceedings of the 28th
Annual Meeting of the ACL, pages 31 38, 1990.

[9] U. Montanari, “Networks of Constraints: Funda-
mental Properties and Applications to Picture Pro-
cessing,” Information Sciences, volume 7, pages 95—

132, 1974.

[10] K. Nagao, “Dependency Analyzer: A Knowledge-
Based Approach to Structural Disambiguation,” In
Proceedings of the 18th International Conference
on Computational Linguistics (COLING-90), pages
282-287, 1990.

[11] K. Nagao, “Constraints and Preferences: Inte-
grating Grammatical and Semantic Knowledge for
Structural Disambiguation,” In Proceedings of the
Pacific Rim International Conference on Artificial
Intelligence (PRICAT’90), pages 484 489, 1990.

[12] J. Nakamura and M. Nagao, “Extraction of Se-
mantic Information from an Ordinary English Dictio-
nary and its Evaluation,” In Proceedings of the 12th
International Conference on Computational Linguis-

tics (COLING-88), pages 459-464, 1988.

[13] P. Procter, editor, Longman Dictionary of Con-
temporary English, Longman Group Limited, Harlow
and London, England, 1978.

[14] J. Seo and R. F. Simmons, “Syntactic Graphs:
A Representation for the Union of All Ambiguous
Parse Trees,” Computational Linguistics, volume 15,
pages 19 32, 1989.

[15] K. Takeda, “Designing Natural Language Ob-
jects,” In Proceedings of the International Sympo-

stum on Database Systems for Advanced Applica-
tions, pages 444 448, 1991.

[16] D. Waltz and J. B. Pollack, “Massively Parallel
Parsing: A Strongly Interactive Model of Natural
Language Interpretation,” Cognitive Science, volume
9, pages 51 74, 1985.

[17] Y. Wilks, “A Preferential, Pattern-Seeking, Se-
mantics for Natural Language Inference,” Artificial
Intelligence, volume 6, pages 53-74, 1975.

