
A Preferential Constraint Satisfaction Technique

for Natural Language Analysis?

Katashi Nagao

Sony Computer Science Laboratory Inc.
3{14{13 Higashi-gotanda, Shinagawa{ku, Tokyo 141, Japan

E-mail: nagao@csl.sony.co.jp

Abstract. In this paper, we present a new tech-

nique for the semantic analysis of sentences, including

an ambiguity-packing method that generates a packed

representation of individual syntactic and semantic

structures. This representation is based on a depen-

dency structure with constraints that must be satis-

�ed in the syntax-semantics mapping phase. Com-

plete syntax-semantics mapping is not performed until

all ambiguities have been resolved, thus avoiding the

combinatorial explosions that sometimes occur when

unpacking locally packed ambiguities. A constraint

satisfaction technique makes it possible to resolve am-

biguities e�ciently without unpacking. Disambigua-

tion is the process of applying syntactic and semantic

constraints to the possible candidate solutions (such as

modi�ees, cases, and word-senses) and removing un-

satisfactory candidates. Since several candidates of-

ten remain after applying constraints, another kind

of knowledge to enable selection of the most plausi-

ble candidate solution is required. We call this new

knowledge a preference. Both constraints and pref-

erences must be applied to coordination for disam-

biguation. Either of them alone is insu�cient for the

purpose, and the interactions between them are im-

portant. We also present an algorithm for controlling

the interaction between the constraints and the pref-

erences in the disambiguation process. By allowing

the preferences to control the application of the con-

straints, ambiguities can be e�ciently resolved, thus

avoiding combinatorial explosions.

1 Introduction

Ambiguities in sentences still present major problems

in the development of natural language systems. In

this paper, we present a new technique for the se-

mantic analysis of sentences, including an ambiguity-

packing method that generates a packed representa-

?A shorter version of this paper was presented at
the 10th European Conference on Arti�cial Intelligence

(ECAI-92), August 3{7, 1992.

tion of individual syntactic and semantic structures.

This packed representation is based on a dependency

structure with constraints that must be satis�ed in

the syntax-semantics mapping phase. Since the ambi-

guities in sentences sometimes cause a combinatorial

explosion, complete syntax-semantics mapping should

not be performed until all ambiguities have been re-

solved without explicitly generating semantic struc-

tures. We also provide a preferential constraint satis-

faction technique that is used for disambiguation and

semantic analysis. Preferences are acquired by using

both the taxonomies of a conceptual lexicon, which

are called natural language classes, and real-world ex-

amples of dependency structures.

We previously proposed a method for structural dis-

ambiguation by using examples of word-to-word de-

pendencies extracted from on-line dictionary de�ni-

tions and text corpora [10, 11]. In this framework,

each candidate solution of an ambiguity (word-to-

word dependency) is assigned a numerical value in-

dicating its preference and the ambiguity is resolved

by selecting the most plausible candidate. Preferences

for word-to-word dependencies are naturally extended

to preferences for relationships between word-senses.

However, the most plausible candidate solutions may

violate semantic constraints on sentence constituents

(such as slot-�ller relationships). A constraint satis-

faction technique makes it possible to e�ciently re-

solve ambiguities.

A framework has been developed that regards syn-

tactic analysis as being a problem of constraint sat-

isfaction [8]. In this framework, grammar rules are

represented by constraints on sentence constituents.

Semantic constraints on word-senses are so-called se-

lectional restrictions on consistency between case slots

and their �llers. Disambiguation is the process of ap-

plying constraints to the possible candidate solutions

(such as modi�ees, cases, and word-senses) and remov-

ing unsatisfactory candidates. This process is called

constraint propagation or �ltering. Unfortunately, sev-

eral candidates often remain after constraint propa-

gation. Constraints and preferences must be applied

together for disambiguation, because either alone is

insu�cient for the purpose, and the interaction be-

tween them is important. We developed an algorithm

that allows the preferences to control the application

of the constraints.

Our approach is inuenced by the preference seman-

tics proposed byWilks [17]. While Wilks' method uses

only hand-coded knowledge for disambiguation and

does not consider packing ambiguities as a means of

avoiding combinatorial explosions, our method calcu-

lates the preferences by using knowledge (i.e., natural

language classes) and experience (i.e., examples of de-

pendency structures) and packs ambiguities with de-

layed semantic composition, a technique that is char-

acterized by not doing a complete syntax-semantics

mapping without �rst having resolved all ambiguities.

Some syntactic/semantic constraints need not be sat-

is�ed in order to pack ambiguities. A constraint satis-

faction technique is used for e�cient disambiguation.

Waltz and Pollack [16] proposed a microfeature-based

approach. In a network, nodes are joined by micro-

features, which have to be prepared in advance. In-

stead of microfeatures, our system uses dependency

structures as experience, that can be dynamically up-

dated, and NL classes as knowledge. Our experience

is acquired semi-automatically from text corpora, and

is easy to maintain. Charniak [2] developed a mech-

anism called marker passing, and Hirst [6] developed

disambiguation mechanisms called poraloid words and

the semantic enquiry desk. Our methods, called DS

(dependency structure) retrieval and class abstraction,

are similar to marker passing. Only modi�er-modi�ee

relationships included in DSs are found. In contrast,

marker passing has a high computational cost and

searches for too many relations.

2 Ambiguity-Packing Based on De-
layed Semantic Composition

2.1 Dependency Structures

A Dependency Structure (DS, hereafter) is an

ambiguity-packed syntactic representation of sentence

structures. It is similar to a syntactic graph [14]. It ex-

plicitly represents modi�er-modi�ee relationships be-

tween words.

A DS is a tree-like structure that consists of nodes

and arcs. A node includes some syntactic features

(e.g., cat, subcat, and person). Arcs correspond to

syntactic relationships between sentence constituents

(e.g., SUBJECT, DOBJECT, and PPADJUNCT).

For example, Figure 1 shows the dependency struc-

ture for the sentence \Insert a diskette into the drive."

A graphical representation of the above DS is shown

in Figure 2 (the nodes corresponding to MOOD, TENSE,

DET, and NUM are omitted for simplicity). We use such

a representation of DSs in the following sections.

PRED ``insert'' ((cat v) (subcat trans))

MOOD imperative

TENSE present

DOBJECT ``diskette'' ((cat n) (person 3))

DET ``a''

NUM sg

PPADJUNCT ``drive'' ((cat n) (person 3) (prep into))

DET ``the''

NUM sg

Figure 1: Dependency Structure for Sentence \Insert a
diskette into the drive."

DOBJECT

diskette

insert

drive

PPADJUNCT

Figure 2: Graphical Representation of Dependency Struc-
ture

2.2 Natural Language Classes

We employ an object-oriented conceptual representa-
tion, called the Natural Language (NL, hereafter) class
system [15] to express the meaning of a sentence. NL
objects, which are particular instances of NL classes,
de�ne a set of conceptual word-senses. The set of
NL classes consists of two special classes, *TOP and
*BOTTOM, and two disjoint subsets of classes, open

classes and closed classes. We have is-a relationships
de�ned over NL classes. For any NL class *x, *x is-a
*TOP" and *BOTTOM is-a *x" hold. Open classes corre-
spond to entities which are expressed by nouns, verbs,
adjectives, etc. Closed classes are used to represent at-
tribute values of open classes. Typically, closed classes
represent information conveyed by auxiliary verbs (as-
pects, tense, modals, etc.), determiners, inections of
verbs and nouns (number, gender, de�niteness, etc.),
and prepositions (relationships between two objects).
The closed classes are stable, and are common to al-
most all domains and natural languages. The open
classes are comprehensive, but are dependent on both
the domain and language. In this paper, a class is
de�ned in terms of a frame format, as shown below.
By convention, an open class name is preceded by an
asterisk, a closed class name is preceded by an as-
terisk and a hyphen, an instance has a hyphen and

a number following its class name, and user-de�ned
slot (attribute) names are preceded by a colon. The
system-provided slot names and facet names are not
preceded by any special characters (comments, how-
ever, are preceded by semi-colons).

(defclass *insert

;; definition of a class *insert

(is-a (value *action))

;; superclass is *action

(:agent (sem *human *system))

;; :agent must be *human or *system

(:theme (sem *physical-object))

;; :theme must be *physical-object

(:goal (sem *location *physical-object))

;; :goal must be *location or *physical-object

)

In the above example, the value facet of the is-a slot

shows a �ller (actual attribute value) of the slot. The

sem facet of other slots shows selectional restrictions

on their potential �llers. Actual �llers for these slots,

except for the is-a slot, are not given in the class def-

inition. The is-a slot is the only system-de�ned slot

for open classes. All other slots are user-de�ned (i.e.,

domain-dependent). The is-a slot de�nes generaliza-

tion relationships among NL classes, which roughly

correspond to the taxonomy of words. A class can in-

herit each slot de�nition from its superclasses, unless

the slot is rede�ned. Figure 3 shows a sample hierar-

chy of NL classes. Our actual NL hierarchy consists

of several thousand classes [15, 4] and the Longman

Dictionary of Contemporary English (LDOCE, here-

after) [13] word-senses [5, 12, 3].

*TOP

*predicate
*action

*object

*modifier

*attribute

*-time
*-modal
*-definiteness
*-quantifier

*BOTTOM

open class

closed class

Figure 3: Sample NL Class Hierarchy

2.3 Syntax-Semantics Mapping for Natural Lan-
guage Objects

Because NL classes constitute the implementation of
lexical word-senses, we can de�ne the composition of
NL objects to represent the meanings of phrases and
sentences. Mapping rules are thus introduced to spec-
ify the structural composition of NL objects from a
given DS. A mapping rule is associated with each NL
class, or an NL class and a surface word, as follows:

(map *insert <=l=> ``insert'' ((cat v) (subcat trans))

;; a class *insert is associated with a transitive

;; verb ``insert''

(:agent = (SUBJECT))

;; :agent filler corresponds to a SUBJECT in the DS

(:theme = (DOBJECT))

;; :theme filler corresponds to a DOBJECT in the DS

(:goal = (PPADJUNCT ((prep into))))

;; :goal filler corresponds to a PPADJUNCT with a

;; preposition ``into'' in the DS

)

(map *physical-action <=s=>

;; *physical-action has no association with a specific

;; word

(:mood = (MOOD))

;; :mood filler corresponds to a MOOD in the DS

(:time = (TENSE))

;; :time filler corresponds to a TENSE in the DS

)

The �rst rule states lexical mapping between a syn-

tactic word, or a node in DS, and an NL object. The

bodies of the �rst and second rules de�ne structural

mapping (i.e., the mapping between a subtree in the

DS and a semantic slot �ller). The �rst rule de�nes

that an instance of *insert is created to represent

the meaning of the transitive verb \insert." Each of

its semantic slot �llers is associated with a speci�c

syntactic �ller of the verb. The (l) operator indi-

cates that the rule de�nes lexical mapping, including

structural mapping, and the (s) operator indicates

that the rule de�nes structural mapping that has no

association with a speci�c word. Structural mapping

in the �rst type of rule is applicable only to a speci�c

NL object which is mapped from a syntactic word,

while the structural mapping for an NL class de�ned

in the second type of rule is inherited by any of its

subclasses.

2.4 Delayed Composition of Natural Language
Objects

During the sentence analysis process, the DS is the

primary structure to be built. Mapping from DS to

NL objects is not applied immediately. Rather, it is

stored within DS nodes as semantic constraints on DS,

which makes it possible to pack lexical and structural

ambiguities into one (or two) DS while keeping track

of all possible semantic interpretations. For example,

the sentence \VM/SP keeps the information on the

virtual disk." can be analyzed as a single DS with two

structural ambiguities, as well as many lexical ambi-

guities caused by \keeps," as shown in Figure 4.

Since the attachment of PPADJUNCT to either

DOBJECT or PRED is ambiguous, its mapping is not

shown in Figure 4 (the \?" mark in the �gure rep-

resents an alternative modi�ee of the phrase). If

PPADJUNCT is attached to DOBJECT, *information-1

will have a (:location *virtual-disk-1) slot. Oth-

erwise, PRED (thus its �ve NL objects, *execute-1

through *own-1) will get the slot. The mapping from

PPADJUNCT to :location slot should be available from

the structural mapping rules. All other mappings are

shown in Figure 4. For example, *execute-1 will have

its :mood �ller from the MOOD node of the DS (i.e.,

*-declarative-1). Note that we cannot avoid a com-

binatorial explosion if we try to materialize all NL-

expressions along with the DS. We get ten distinct

NL-expressions in the above example, and the DS can

no longer be packed. The lexical ambiguity of PRED

has yet to be resolved.

The disambiguation technique, described later in

this paper, will determine the most probable inter-

pretation. Once the DS becomes unambiguous, the

structural mapping is evaluated to obtain a full NL-

expression that represents the meaning of the sen-

tence. This evaluation process is fairly straightfor-

ward.

3 Acquisition of Preferences Using
Knowledge and Experience

We use two types of information in the disambigua-

tion of sentence structures. One type is constraints,

described later in this paper. The other is preferences,

described in this section. The di�erence between these

types can be characterized briey as follows: Our con-

straints are symbolic or combinatorial, and restrict

sentence structures, while our preferences are numer-

ical, and compare the candidates of structures. We

acquire the preferences by using NL classes and ex-

amples of DSs.

3.1 Examples of Dependency Structures as Expe-
rience

We constructed a set of Dependency Structures (DSs)

from on-line dictionaries (LDOCE and the IBM Dic-

tionary of Computing) and text corpora [10, 11].

We view the dependency structures as experience,

whereas the NL classes are regarded as knowledge.

The DSs as experience are completely disam-

biguated. One node in each is mapped to one NL

object. They are semi-automatically constructed by

using large on-line dictionaries and corpora as source

texts. The sentences in a source text, which can be

ambiguous at �rst, are disambiguated by using a rel-

atively small number of DSs and NL classes. The

disambiguated DSs are also regarded as experience.

Therefore, experience increases incrementally.

3.2 Acquisition of Preferences

By applying constraints, we can restrict the candi-

dates of ambiguities. However, ambiguities usually

remain in the sentences afterwards. Therefore, we try

to assign a preference value to each candidate to select

the most preferable semantic interpretation.

When there are candidate structures, DSs that are

similar to each of the candidate structures are searched

for. The NL classes are used to abstract those classes

that are mapped from the nodes in the DSs, and the

preferences are calculated using heuristics. We use the

concept of semantic distance to calculate the value of

each preference (de�ned in Section 3.2.3). The follow-

ing example sentence illustrates these processes:

(S1) VM/SP keeps the information on the

virtual disk.

The DS of (S1) is shown in Figure 5.

keep

VM/SP information

virtual disk

SUBJECT DOBJECT PPADJUNCT

PPADJUNCT

or

Figure 5: Dependency Structure of (S1)

Sentence (S1) has the following ambiguities:

� Structural ambiguity: the attachment of \on the

virtual disk" is ambiguous.

� Lexical ambiguity: the meaning of \keep" is am-

biguous (We assume that the other words contain

no ambiguity).

PRED ``keep'' ((cat v) (subcat trans)

(sem (*execute-1 (:mood MOOD) (:time TENSE) (:agent SUBJECT) (:theme DOBJECT))

(*guard-1 (:mood MOOD) (:time TENSE) (:agent SUBJECT) (:theme DOBJECT))

(*hold-1 (:mood MOOD) (:time TENSE) (:agent SUBJECT) (:theme DOBJECT))

(*employ-1 (:mood MOOD) (:time TENSE) (:agent SUBJECT) (:theme DOBJECT))

(*own-1 (:mood MOOD) (:time TENSE) (:agent SUBJECT) (:theme DOBJECT))))

MOOD declarative ((sem *-declarative-1))

TENSE present ((sem *-present-1))

SUBJECT ``VM/SP'' ((cat n) (person 3) (sem (*vm/sp-1 (:number NUM))))

NUM sg ((sem *-singular-1))

DOBJECT ``information'' ((cat n) (person 3)

(sem (*information-1 (:definiteness DET) (:number NUM))))

DET ``the'' ((sem *-definite-1))

NUM sg ((sem *-singular-2))

? PPADJUNCT ``virtual disk'' ((cat n) (person 3) (prep on)

(sem (*virtual-disk-1 (:definiteness DET) (:number NUM))))

DET ``the'' ((sem *-definite-2))

NUM sg ((sem *-singular-3))

Figure 4: Ambiguous Dependency Structure with Partial Semantic Representation

;; Sense 1

(defclass *execute (map *execute <=l=> ``keep'' ((cat v) (subcat trans)))

(is-a (value *action))

(:agent (sem *human *abstract))

(:theme (sem *abstract)))

;; Sense 2

(defclass *guard (map *guard <=l=> ``keep'' ((cat v) (subcat trans)))

(is-a (value *action))

(:agent (sem *human))

(:theme (sem *human)))

;; Sense 3

(defclass *hold (map *hold <=l=> ``keep'' ((cat v) (subcat trans)))

(is-a (value *action))

(:agent (sem *human *abstract))

(:theme (sem *abstract *object)))

;; Sense 4

(defclass *employ (map *employ <=l=> ``keep'' ((cat v) (subcat trans)))

(is-a (value *action))

(:agent (sem *human *abstract))

(:theme (sem *movable-object)))

;; Sense 5

(defclass *own (map *own <=l=> ``keep'' ((cat v) (subcat trans)))

(is-a (value *action))

(:agent (sem *human))

(:theme (sem *abstract)))

Figure 6: Word Sense De�nitions and Mapping Rules for \keep"

The word \keep" has �ve meanings, each of which

can be mapped to one NL object. The mapping rules

and class de�nitions are as shown in Figure 61

The preference acquisition process consists of three

parts: (1) DS retrieval, (2) class abstraction, and (3)

preference calculation. Below, we explain these pro-

cesses using the example sentence (S1).

3.2.1 DS Retrieval

In the DS retrieval process, DSs that include the words

in each candidate dependency are retrieved. For (S1),

there are two candidate interpretations of the struc-

tural ambiguity:

(C1) \Virtual disk" modi�es \keep."

(Semantically, *virtual-disk-1 may �ll the

:location slot of *execute-1, *guard-1,

*hold-1, *employ-1, or *own-1.)

(C2) \Virtual disk" modi�es \information."

(Semantically, *virtual-disk-1 may �ll the

:location slot of *information-1.)

First, the system searches for DSs that include the

word \keep," as well as words that can be mapped

to one of the NL objects mapped from \keep" (i.e.,

synonyms). DSs that include \virtual disk" and its

synonyms are also retrieved. Finally, DSs that are

included in both sets of DSs are selected. The same

procedure is followed for \information" and \virtual

disk."

If there are DSs for only one candidate dependency,

the candidate is preferable. If there are DSs for more

than one candidate, we invoke the preference calcu-

lation process. If there are no DSs, then the class

abstraction process is invoked. In this case, we can-

not �nd any DSs that include these words, therefore

we proceed to the class abstraction process. These

processes continue until the abstracted class arrives

at the *TOP or until the preferences are assigned to all

candidates of each ambiguity.

3.2.2 Class Abstraction

Briey, the class abstraction method is as follows:

First, the class corresponding to the modi�er is ab-

stracted. (In our example the class of *virtual-disk

is abstracted.) The immediate superclass is *disk and

the retrieval process is re-executed. If no DSs can be

found by class abstraction of the modi�er, then the

1We extracted the classes mainly from the Longman
Dictionary of Contemporary English (LDOCE) [13], re-
stricting their meanings and de�nitions for simplicity.

classes of modi�ees *keep and *information are ab-

stracted. In this case, we found two DSs for each

candidate, as shown in Figure 7.

SUBJECT DOBJECT

PPADJUNCT

SUBJECT
DOBJECT

PPADJUNCT

operating system
(*operating-system)

store
(*hold)

file
(*file)

disk
(*disk)

manage
(*control)

file system
(*file-system)

information
(*information)

disk
(*disk)

(a) DS of (S2)

(b) DS of (S3)

Figure 7: DSs of (S2) and (S3)

The sentences that correspond to the DSs are as

follows:

For (C1): (S2) The operating system stores

the �les in the disk.

For (C2): (S3) The �le system manages the

information on the disk.

3.2.3 Preference Calculation

The preference calculation process calculates the se-

mantic distance between the other words in the input

sentence and the nodes in the DS whose rules are con-

sistent with those words. We call each word pair a

matching word pair and present it as a bracketed pair.

For example, [\VM/SP",\operating system"] and

[\�le",\information"] are matching word pairs for

(C1). [\VM/SP",\�le system"] and [\keep",\manage

"] are matching word pairs for (C2). For each match-

ing word pair, a distance value is assigned as follows:

� If the matching words are identical or synony-

mous, the value is 0.

� If the matching words have an is-a relationship,

the value is the distance between the NL classes

to which the words in the pair correspond.

� If there is no relationship, the value is the height

of the NL class hierarchy.

The total preference value Pref for a candidate C

is calculated using the following formula:

(We assume that the candidate has n matching word

pairs, MWP1 . . . MWPn.)

Pref (C) =
1

P
n

i=1

SemDist(MWP
i
(C))

n
+ ClassAbs(C)

SemDist(MWPi(C)) : semantic distance value of

MWPi for C

ClassAbs(C) : the number of the class abstraction

\VM/SP" is an immediate subclass of \operating

system," so the semantic distance value is 1. For other

matching words, if there is no relationship and the

height of the NL class hierarchy is ten, the preference

values for (C1) and (C2) are as follows:

For (C1): 1
1+10

2
+1

= 2
13

For (C2): 1
10+10

2
+1

= 1
11

The candidate having the highest preference value is

the most preferable. In this case, the candidate (C1),

where \virtual disk" modi�es \keep," is preferable to

(C2), \virtual disk" modi�es \information."

The preferences for candidates of ambiguities are

calculated in this way.

4 Disambiguation by a Preferential
Constraint Satisfaction Technique

4.1 Disambiguation as Constraint Satisfaction

Constraints for disambiguation include syntactic and

semantic constraints. Syntactic constraints can be

considered as being declarative representations of syn-

tactic rules. The Constraint Dependency Grammar

(CDG, hereafter) [8] formalizes parsing as a constraint

satisfaction problem. Our syntactic constraints are

equivalent to CDG's syntactic rules. Semantic con-

straints are formed by the consistency between the se-

mantic categories of case-slots and their �llers, which

are called selectional restrictions.

From these constraints, a constraint network [9] is

generated. Its nodes correspond to ambiguities that

are represented as sets of candidates of slot-�ller rela-

tionships. Its arcs correspond to constraint matrices

that represent constraints on combinations of candi-

dates. When the constraint network is generated, an

algorithm for constraint propagation [7] is applied to

resolve any ambiguities. We developed a modi�ed al-

gorithm for constraint propagation that is controlled

by preference orderings.

4.2 Syntactic Constraints

We regard constraints between ambiguous modi�ca-

tion relations (dependencies) as being syntactic con-

straints. They include the no-crossing constraint,

which means that modi�cation links cannot cross each

other, and the no-duplicate-case constraint, which

means that modi�cation relations (i.e., case-slots)

whose modi�ees (i.e., frames with the slot) are the

same cannot play a role of the same relation. De-

pendencies are considered as slot-�ller relationships

that are represented by instances of the form (*frame

(:slot *frame-of-filler)).

Ambiguities are non-singleton sets of dependencies

whose modi�ers (i.e., �llers) are the same. If a can-

didate dependency of an ambiguity and a candidate

of another ambiguity cross each other, then the com-

bination of these candidates violates the no-crossing

constraint. If an element of an ambiguity has the same

modi�ee (frame) and case relation (slot) as an element

of another ambiguity, then their combination violates

the no-duplicate-case constraint.

For example, in the sentence (S4) \Put the block on

the table on the oor in the room.", the prepositional

phrases \on the table" (PP1), \on the oor" (PP2),

and \in the room" (PP3) have attachment ambigui-

ties, and there are the following syntactic constraints

between these ambiguities.

1. No-crossing

If PP1 is attached to the verb \put" (V), then

PP2 cannot be attached to the noun phrase \the

block" (NP). If PP2 is attached to V, then PP3

cannot be attached to either NP or PP1.

2. No-duplicate-case (in this case, the case relations

correspond to the :goal and :location slots)

If PP1 is attached to V, then PP2 and PP3 cannot

be attached to V. If PP1 is attached to NP, then

PP2 and PP3 cannot be attached to NP.

In accordance with these constraints, the constraint

matrices are constructed.2

Table 1 shows the constraint matrices constructed

from (S4), and the sets A1, A2, and A3 in the matrices

are de�ned as follows.

A1=fa=(*put-1 (:goal *table-1)),

b=(*block-1 (:location *table-1))g

A2=fc=(*put-1 (:goal *floor-1)),

d=(*block-1 (:location *floor-1)),

e=(*table-1 (:location *floor-1))g

A3=ff=(*put-1 (:goal *room-1)),

g=(*block-1 (:location *room-1)),

h=(*table-1 (:location *room-1)),

i=(*floor-1 (:location *room-1))g

2For the sake of simplicity, we don't consider word-sense
ambiguities here.

Table 1: Constraint Matrices for (S4)

A1nA2 c d e

a 0 0 1

b 1 0 1

A1nA3 f g h i

a 0 0 1 1

b 1 0 1 1

A2nA3 f g h i

c 0 0 0 1

d 1 0 0 1

e 1 1 0 1

The values represent whether the combination sat-

is�es the constraint. When the value is 0, the combi-

nation of elements in that row and column does not

satisfy the constraint. If all the values in a column or

row are 0, then the candidate in that column or row

is removed from the ambiguity. Since all values in the

column of d are 0 in matrix A1nA2, the candidate d of

A2 should be removed. Therefore, the values in row d

in matrix A2nA3 all become 0. The values in column

g of matrix A2nA3 and those of h in matrix A1nA3

also become 0 for the same reason.

Therefore, the matrices on A3 are updated by con-

straint propagation. Table 2 shows the revised con-

straint matrices.

4.3 Semantic Constraints

We also consider semantic constraints between slot-

�ller relationships called selectional restrictions. They

are taxonomic constraints on which structures can

serve as part of another structure, and are used for

word-sense disambiguation. Word-sense ambiguities

are also represented as non-singleton sets of slot-�ller

relationships.

For example, in the sentence (S1) \VM/SP keeps

the information on the virtual disk." in the previous

section, there is a word-sense ambiguity for \keep"

and a structural ambiguity on the modi�cation of \on

the virtual disk," as described in the previous section.

We represent these ambiguities as follows:

A1=fa=(*execute-1 (:agent *vm/sp-1)),

b=(*guard-1 (:agent *vm/sp-1)),

c=(*hold-1 (:agent *vm/sp-1)),

d=(*employ-1 (:agent *vm/sp-1)),

e=(*own-1 (:agent *vm/sp-1))g

A2=ff=(*execute-1 (:theme *information-1)),

g=(*guard-1 (:theme *information-1)),

h=(*hold-1 (:theme *information-1)),

i=(*employ-1 (:theme *information-1)),

j=(*own-1 (:theme *information-1))g

A3=fk=(*execute-1 (:location *virtual-disk-1)),

l=(*guard-1 (:location *virtual-disk-1)),

m=(*hold-1 (:location *virtual-disk-1)),

n=(*employ-1 (:location *virtual-disk-1)),

o=(*own-1 (:location *virtual-disk-1)),

p=(*information-1 (:location *virtual-disk-1))g

From the de�nitions of the senses of \keep" in

the previous section, and from the class relations

of *vm/sp (i.e., *vm/sp is a subclass of *abstract)

and of *information (i.e., *information is also a

subclass of *abstract), we �nd that *vm/sp-1 does

not �ll in the :agent slot of *guard-1 and *own-1,

since their class de�nitions include the description of

(:agent (sem *human)). Similarly, we can also �nd

that *information-1 does not �ll in the :theme slot

of *guard-1 and *employ-1, since each of their class

de�nitions includes the description of (:theme (sem

*human)) or (:theme (sem *movable-object)). Fur-

thermore, we also consider the trivial constraint

whereby if the :agent, :theme, and :location slots

are �lled, then the frames including these slots will be

identical, since the frames correspond to the meaning

of the single word \keep" in the sentence (S1).

Considering the semantic constraints, the constraint

matrices are constructed as shown in Table 3.

The matrices on A3 are updated by constraint prop-

agation as shown in Table 4.

4.4 Algorithm of Disambiguation

A brief overview of the disambiguation algorithm is as

follows:

1. If all combinations of the most preferable candi-

dates satisfy the constraints, then choose them

and terminate. Otherwise, go to the next step.

2. Remove the least preferable candidate. Then per-

form constraint propagation.

3. If all candidate solutions of an ambiguity have

been removed, undo the last propagation (restore

the states that were modi�ed in step 2).

4. If all ambiguities are singletons, then terminate.

5. Repeat steps 2 and 3 for the next least preferable

candidate.

A detailed algorithm of constraint propagation un-

der the control of preference orderings is as follows:

Let Ai and Aj be ambiguities, a and b be each element

Table 2: Revised Constraint Matrices for (S4)

A1nA3 f g h i

a 0 0 0 1

b 1 0 0 1

A2nA3 f g h i

c 0 0 0 1

d 0 0 0 0

e 1 0 0 1

Table 3: Constraint Matrices for (S1)

A1nA2 f g h i j

a 1 0 0 0 0

b 0 0 0 0 0

c 0 0 1 0 0

d 0 0 0 0 0

e 0 0 0 0 0

A1nA3 k l m n o p

a 1 0 0 0 0 1

b 0 0 0 0 0 0

c 0 0 1 0 0 1

d 0 0 0 1 0 1

e 0 0 0 0 0 0

A2nA3 k l m n o p

f 1 0 0 0 0 1

g 0 0 0 0 0 0

h 0 0 1 0 0 1

i 0 0 0 0 0 0

j 0 0 0 0 1 1

respectively, M(i; j) be a constraint matrix on Ai and

Aj, and M(i; a; j; b) be the value of the matrix when

Ai takes a and Aj takes b. In addition, let p(i; a) be a's

preference value in ambiguity Ai. First, for all pairs

of an ambiguity and its element (i; a), construct an

ordering set PRF that is arranged (i; a) in ascending

order of preference. Thus, for each element (i; a) and

(j; b) of PRF , if (i; a) is ahead of (j; b), then p(i; a) is

equal to or less than p(j; b).

The algorithm consists of the following steps:

1. Remove the front-most element (i; a) from PRF .

2. Using the following algorithm, for all ambiguities

and their elements, construct their supported sets

and the set of inactive elements IN .

First, for each ambiguity Ai, its element a, and a

constraint matrix M (i; j), construct a supported

set of (i; a), S(i; j; a) = f(j; b)jM(i; a; j; b) = 1 (in

this case, we say that (j; b) supports (i; a))g. If

S(i; j; a) = fg then put (i; a) in IN , a set of inac-

tive elements. Also, for each Aj and its element

b, construct a supported set of (j; b), S(j; i; b). If

S(j; i; b) = fg, then put (j; b) in IN .

Set the set CHG (the set containing the changed

elements) to fg.

3. For each of the ambiguities Aj and Ak and their

elements b and c, respectively, if M(i; a; j; b) = 1

or M (k; c; i; a) = 1, then set their values to 0 and

put (i; a; j; b) or (k; c; i; a) in CHG.

4. Iterate the following sub-steps until IN becomes

empty:

(a) Remove element (j; b) from IN .

(b) Set Aj to Aj � fbg.

(c) If Aj = fg then set Aj to fbg, for all ele-

ments (k; c; l; d) of CHG, set M(k; c; l; d) to

1, then go to step 1.

(d) For all elements (k; c) of S(j; b), set

M(j; b; k; c) to 0 and S(k; j; c) to S(k; j; c)�

f(j; b)g, then put (j; b; k; c) in CHG.

(e) If S(k; j; c) = fg and (k; c) is not an element

of IN , then put (k; c) in IN .

5. If all ambiguities are singletons, terminate. Oth-

erwise, go to step 1.

The problem that this algorithm can solve is called

the consistent labeling problem (CLP) [9]. CLP is a

problem that determines the existence of an assign-

ment that satis�es all the constraints, given a set of

variables each of which can take any one of a set of

values and constraints between these values. An ex-

ample of CLP is a graph-coloring problem to assign

colors to a graph with all adjacent vertexes in di�er-

ent colors. A CLP is satis�able if there is an assign-

ment that satis�es all the constraints simultaneously.

Deciding the satis�ability of a CLP is NP complete

in general. However, there are cases in which unsat-

isfactory values (i.e., values that are not included in

any solution) can be identi�ed simply by constraint

propagation that checks local inconsistencies. Such

an algorithm has been shown to have polynomial com-

plexity [7].

It is possible to achieve more global consistency

by looking at multiple constraint matrices simultane-

ously, but as Carter [1] argues regarding the experi-

mental Propane parser, once local (pair-wise) consis-

tencies have been achieved, performing a backtrack

search is usually more e�cient than using higher-

level consistency algorithms. Our algorithm combines

Table 4: Revised Constraint Matrices for (S1)

A1nA3 k l m n o p

a 1 0 0 0 0 1

b 0 0 0 0 0 0

c 0 0 1 0 0 1

d 0 0 0 0 0 0

e 0 0 0 0 0 0

A2nA3 k l m n o p

f 1 0 0 0 0 1

g 0 0 0 0 0 0

h 0 0 1 0 0 1

i 0 0 0 0 0 0

j 0 0 0 0 0 0

constraint propagation with the preferential control

rather than to perform a backtrack search. We ex-

tend a constraint propagation algorithm in two senses.

First, we add a control mechanism based on pref-

erential orderings over candidate solutions. Second,

we add an inconsistency checking and undoing pro-

cess when local inconsistencies occur after constraint

propagation. These mechanisms are invoked when the

given constraints are not tight enough to narrow down

the number of candidate solutions to one. If a CLP

can have a solution, then our algorithm can �nd a

solution, since the algorithm maintains local consis-

tency (locally consistent value sets must contain a so-

lution) and narrows down the number of candidates.

However, since our preference compares candidates of

each value set (i.e., ambiguity) independently, our al-

gorithm may not �nd the optimum solution that is

prior to all other solutions.

5 Experimental Results

In this section, we describe some experiments in dis-

ambiguation and their results. First, we extracted

529 sample sentences including the verb \get" and it's

synonyms from LDOCE. The word \get" has twenty

senses, making it very di�cult to select a particular

sense simply by selectional restrictions.

We also prepared another 135 test sentences includ-

ing \get" from LDOCE. We randomly divided the test

sentences into three groups (which we call group1,

group2, and group3). This division is done to see the

e�ect of increasing experience. The following experi-

ments were carried out on these groups.

Experiment1

Sentences in group1 were disambiguated by experi-

ments with a set of 529 disambiguated dependency

structures.

Experiment2

After Experiment1, we checked and modi�ed the out-

put dependency structures of group1 and added them

to the original DS set. group2 was then disambiguated

with the modi�ed DS set, to which DSs of group1 were

added.

Experiment3

After Experiment2, we checked and modi�ed the out-

put dependency structures of group2 and added them

to the DS set. group3 was then disambiguated with

the modi�ed DS set to which DSs of group1 and

group2 were added.

Table 5 shows the results of the experiments.

We evaluated the outputs of each of the groups and

categorized them into three success levels:

A: There were exactly matched DSs and the system

was able to select a correct answer.

B: More than one DS match had the same preference

value, but the system was able to select a correct an-

swer by using heuristics.

C: The system was not able to select a correct answer.

For the relatively small cases (about 500 DSs), we

attained an average success ratio of 71.5%. This expe-

rience showed that most of time for disambiguation is

taken by DS retrieval and preference calculation, not

by applying constraints and constraint propagation.

6 Concluding Remarks

We have developed a sentence analysis technique con-

taining an ambiguity-packing method, a preference

acquisition method, and a constraint-based disam-

biguation method. Sentences are parsed and trans-

formed into ambiguity-packed dependency structures.

To avoid combinatorial explosions, complete syntax-

semantics mapping must not be performed until all

ambiguities have been resolved without generating in-

dividual semantic structures. A constraint satisfac-

tion technique makes it possible to resolve ambiguities

e�ciently without unpacking. Constraints and pref-

erences must be applied together for disambiguation,

because either of them alone is insu�cient, and the in-

teraction between them is important. The constraints

consist of syntactic and semantic constraints. The

preferences are acquired from the taxonomies of a con-

ceptual lexicon (NL classes) and examples of depen-

dency structures. To resolve ambiguities e�ciently, we

Table 5: Results of the Experiments

Total sentences Parsed sentences (S) A B C A+B
S

(%)

Experiment1 45 41 15 8 18 56.1

Experiment2 45 43 17 19 7 83.7

Experiment3 45 44 22 11 11 75.0

developed a new constraint satisfaction mechanism in

which constraints are applied according to preference

orderings.

Acknowledgments

This work was partially done while the author was a

member of IBM Research, Tokyo Research Laboratory

(TRL). The author would like to thank the members of

the natural language processing group at TRL, espe-

cially Koichi Takeda, Naohiko Uramoto, and Hiroshi

Maruyama, for their helpful discussions and comments

on an earlier draft of this paper.

References

[1] D. Carter, \E�cient Disjunctive Uni�cation for
Bottom-Up Parsing," In Proceedings of the 13th In-

ternational Conference on Computational Linguistics

(COLING-90), pages 70{75, 1990.

[2] E. Charniak, \A Neat Theory of Maker Passing,"
In Proceedings of the 5th National Conference on Ar-

ti�cial Intelligence (AAAI-86), pages 584{588, 1986.

[3] M. S. Chodorow, R. J. Byrd, and G. E. Heidorn,
\Extracting Semantic Hierarchies from a Large On-
Line Dictionary," In Proceedings of the 23th Annual

Meeting of the ACL, pages 299{304, 1985.

[4] K. Goodman and S. Nirenburg, editors, The

KBMT Project: A Case Study in Knowledge-Based

Machine Translation, Morgan Kaufmann Publishers,
San Mateo, California, 1991.

[5] L. Guthrie, B. M. Slator, Y. Wilks, and R. Bruce,
\Is There Content in Empty Heads?," In Proceed-

ings of the 13th International Conference on Com-

putational Linguistics (COLING-90), pages 138{143,
1990.

[6] G. Hirst, Semantic Interpretation and the Res-

olution of Ambiguity, Cambridge University Press,
1987.

[7] A. K. Mackworth, \Consistency in Networks of
Relations," Arti�cial Intelligence, volume 8, pages
99{118, 1977.

[8] H. Maruyama, \Structural Disambiguation with
Constraint Propagation," In Proceedings of the 28th

Annual Meeting of the ACL, pages 31{38, 1990.

[9] U. Montanari, \Networks of Constraints: Funda-
mental Properties and Applications to Picture Pro-
cessing," Information Sciences, volume 7, pages 95{
132, 1974.

[10] K. Nagao, \Dependency Analyzer: A Knowledge-
Based Approach to Structural Disambiguation," In
Proceedings of the 13th International Conference

on Computational Linguistics (COLING-90), pages
282{287, 1990.

[11] K. Nagao, \Constraints and Preferences: Inte-
grating Grammatical and Semantic Knowledge for
Structural Disambiguation," In Proceedings of the

Paci�c Rim International Conference on Arti�cial

Intelligence (PRICAI'90), pages 484{489, 1990.

[12] J. Nakamura and M. Nagao, \Extraction of Se-
mantic Information from an Ordinary English Dictio-
nary and its Evaluation," In Proceedings of the 12th

International Conference on Computational Linguis-

tics (COLING-88), pages 459{464, 1988.

[13] P. Procter, editor, Longman Dictionary of Con-

temporary English, Longman Group Limited, Harlow
and London, England, 1978.

[14] J. Seo and R. F. Simmons, \Syntactic Graphs:
A Representation for the Union of All Ambiguous
Parse Trees," Computational Linguistics, volume 15,
pages 19{32, 1989.

[15] K. Takeda, \Designing Natural Language Ob-
jects," In Proceedings of the International Sympo-

sium on Database Systems for Advanced Applica-

tions, pages 444{448, 1991.

[16] D. Waltz and J. B. Pollack, \Massively Parallel
Parsing: A Strongly Interactive Model of Natural
Language Interpretation," Cognitive Science, volume
9, pages 51{74, 1985.

[17] Y. Wilks, \A Preferential, Pattern-Seeking, Se-
mantics for Natural Language Inference," Arti�cial

Intelligence, volume 6, pages 53{74, 1975.

